Ultrasound detection by clupeiform fishes.
نویسندگان
چکیده
It has previously been shown that at least one species of fish (the American shad) in the order clupeiforms (herrings, shads, and relatives) is able to detect sounds up to 180 kHz. However, it has not been clear whether other members of this order are also able to detect ultrasound. It is now demonstrated, using auditory brainstem response (ABR), that at least one additional species, the gulf menhaden (Brevoortia patronus), is able to detect ultrasound, while several other species including the bay anchovy (Anchoa mitchilli), scaled sardine (Harengula jaguana), and Spanish sardine (Sardinella aurita) only detect sounds to about 4 kHz. ABR is used to confirm ultrasonic hearing in the American shad. The results suggest that ultrasound detection may be limited to one subfamily of clupeiforms, the Alosinae. It is suggested that ultrasound detection involves the utricle of the inner ear and speculate as to why, despite having similar ear structures, only one group may detect ultrasound.
منابع مشابه
Development of ultrasound detection in American shad (Alosa sapidissima).
It has recently been shown that a few fish species, including American shad (Alosa sapidissima; Clupeiformes), are able to detect sound up to 180 kHz, an ability not found in most other fishes. Initially, it was proposed that ultrasound detection in shad involves the auditory bullae, swim bladder extensions found in all members of the Clupeiformes. However, while all clupeiformes have bullae, n...
متن کاملUltrasound detection in the Gulf menhaden requires gas-filled bullae and an intact lateral line.
Clupeiform fish species, including the Gulf menhaden (Brevoortia patronus) that belong to the subfamily Alosinae, can detect ultrasound. Clupeiform fishes are unique in that they have specialized gas-filled bullae in the head associated with the ear via the bulla membrane and with the lateral line via the lateral recess membrane. It has been hypothesized that the utricle of the inner ear is res...
متن کاملMolecular phylogeny of Clupeiformes (Actinopterygii) inferred from nuclear and mitochondrial DNA sequences.
The taxonomy of clupeiforms has been extensively studied, yet phylogenetic relationships among component taxa remain controversial or unresolved. Here we test current and new hypotheses of relationships among clupeiforms using mitochondrial rRNA genes (12S and 16S) and nuclear RAG1 and RAG2 sequences (total of 4749bp) for 37 clupeiform taxa representing all five extant families and all subfamil...
متن کاملHair cell heterogeneity and ultrasonic hearing: recent advances in understanding fish hearing.
The past decade has seen a wealth of new data on the auditory capabilities and mechanisms of fishes. We now have a significantly better appreciation of the structure and function of the auditory system in fishes with regard to their peripheral and central anatomy, physiology, behaviour, sound source localization and hearing capabilities. This paper deals with two of the newest of these findings...
متن کاملBehaviour as input for modelling dispersal of fish larvae: behaviour, biogeography, hydrodynamics, ontogeny, physiology and phylogeny meet hydrography
Both morphology and behaviour develop during the pelagic larval stage of demersal teleost fishes. Demersal perciform fishes from warm-water habitats begin their pelagic larval stage as plankton but end it as nekton, with behavioural capabilities (including swimming, orientation and sensory abilities) that can influence, if not control, dispersal trajectories. The ontogeny of these behaviours, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 109 6 شماره
صفحات -
تاریخ انتشار 2001